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Role of isoconversional methods in varying
activation energies of solid-state kinetics

II. Nonisothermal kinetic studies
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Abstract

The concept of variable activation energy in solid-state reaction kinetics has caused considerable debate. Activation energy variation has
been detected by isoconversional or “model-free” calculation methods, which generate activation energy as a function of reaction progress.
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he relationship between calculation methods and artifactual variation in activation energy was investigated in this work by e
odel-fitting and isoconversional methods to analyze both simulated and experimental nonisothermal data. The experimental d
onisothermal sulfameter-dioxolane solvate desolvation by TGA. We show that variable activation energy in simple reactions c
rtifact resulting from the incorrect application of isoconversional methods.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Some theoretical aspects of solid-state kinetics have
aused numerous debates and controversies[1,2]. One such
ontroversy is the variation in activation energy as a func-
ion of reaction progress[3,4]. Explanations for this variation
sually focus on the complexities inherent in solid-state kinet-

cs with little consideration being given to secondary effects,
uch as artifacts from mathematical or computational meth-
ds. The aim of this work is to test the reliability of these
ethods. Our previous work focused on analyzing isothermal
ata[5] and this part focuses on kinetic analysis of simulated
nd real experimental nonisothermal data.

∗ Corresponding author. Tel.: +1 319 335 8819; fax: +1 319 335 9349.
E-mail address: ammar-khawam@uiowa.edu (A. Khawam).

1.1. Rate laws and kinetic analysis

The rate of a solid-state reaction can be gene
described by,

dα

dt
= kf (α) (1)

wherek is the reaction rate constant,f(α) is the reaction mode
andα is the conversion fraction.

Integrating the above equation gives the integral rate

g(α) = kt (2)

whereg(α) is the integral reaction model. The tempera
dependence of the rate constant is described by the Arrh
equation[6],

k = A e−Ea/RT (3)

040-6031/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2005.05.015



102 A. Khawam, D.R. Flanagan / Thermochimica Acta 436 (2005) 101–112

whereA is the pre-exponential (frequency) factor,Ea is the
activation energy,T is the absolute temperature andR is the
gas constant.

Substituting Eq.(3) in the above rate expressions gives,

dα

dt
= A e−Ea/RTf (α) (4)

and

g(α) = A e−Ea/RTt (5)

Several reaction models[7] using f(α) or g(α) are listed in
Table 1.

Kinetic parameters can be obtained from isothermal
kinetic data by applying these rate laws or can be transformed
into nonisothermal rate expressions describing reaction rate
as a function of temperature at a constant heating rate by
utilizing the following,

dα

dT
= dα

dt

dt

dT
(6)

where dα/dTis the nonisothermal reaction rate, dα/dtis the
isothermal reaction rate and dt/dTis the inverse heating rate
(1/β).

Substituting Eq.(4) into Eq.(6)gives the differential form
o

g

If Ea/RT is replaced by “x” and integration limits transformed,
Eq.(8) becomes,

g(α) = AEa

βR

∫ ∞

x

e−x

x2 dx (9)

Eq.(9) can be written as,

g(α) = AEa

βR
p(x) (10)

wherep(x) is the exponential integral.
The exponential integral (p(x)) has no analytic solution

[8], but has many approximations[8–12].
Kinetic parameters can be obtained from nonisothermal

rate laws by both model-fitting and isoconversional (model-
free) methods. Model-fitting methods involve fitting different
models to�-temperature curves and simultaneously deter-
mining the activation energy (Ea) and frequency factor (A).
There are several nonisothermal model-fitting methods, one
of the most popular being the Coats and Redfern method
[13,14]. This method utilizes the asymptotic series expan-
sion for approximating the exponential integral (p(x)) in Eq.
(10), giving,

ln
g(α)

T 2 = ln

(
AR

βEa

[
1 −

(
2RTexp

Ea

)])
− Ea

RT
(11)
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f the nonisothermal rate law,

dα

dT
= A

β
e−Ea/RTf (α) (7)

Upon integration, Eq.(7) gives,

(α) = A

β

∫ T

0
e−Ea/RTdT (8)

able 1
olid-state rate expressions for different reaction models

odel Differe

ucleation models
Power law (P2) 2α(1/2)

Power law (P3) 3α(2/3)

Power law (P4) 4α(3/4)

Avarami-Erofe’ev (A2) 2(1− α

Avarami-Erofe’ev (A3) 3(1− α

Avarami-Erofe’ev (A4) 4(1− α

eometrical contraction models
Contracting area (R2) 2(1− α

Contracting volume (R3) 3(1− α

iffusion models
1D Diffusion (D1) 1/2α

2D Diffusion (D2) [−ln(1
3D Diffusion-Jander Eq. (D3) 3(1− α

Ginstling–Brounshtein (D4) (3/2((1

eaction-order models
Zero-order (F0/R1) 1
First-order (F1) (1− α)
Second-order (F2) (1− α)
Third-order (F3) (1− α)
hereTexp is the mean experimental temperature.
Plotting the left-hand side of Eq.(11), which includes th

odelg(α), versus 1/TgivesEa andA from the slope an
ntercept, respectively. The model that gives the best l
t is selected as the model of choice.

Modelistic methods has been criticized in nonisothe
tudies[15–19], because:

rmf (α) = 1
k

dα
dt

Integral formg(α) = kt

α(1/2)

α(1/3)

α(1/4)

− α)]1/2 [−ln(1 − α)]1/2

− α)]2/3 [−ln(1 − α)]1/3

− α)]3/4 [−ln(1 − α)]1/4

[1 − (1− α)1/2]
[1 − (1− α)1/3]

α2

1 [(1 − α) ln(1− α)] + α

− (1− α)1/3) [1− (1− α)1/3]2

/3 − 1) 1− (2α/3)− (1− α)2/3

α

−ln(1− α)
(1− α)−1 − 1
0.5[(1− α)−2 − 1]
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1. They assume a constant kinetic triplet (A,Ea and model).
2. They involve fitting three parameters (A,Ea and model),

which are simultaneously determined from a single curve.
3. They involve a single heating rate, which is not always

sufficient to determine reaction kinetics.

On the other hand, isoconversional methods calculateEa
at progressive degrees of conversion (α) without modelistic
assumptions. The Ozawa, Flynn and Wall method[20,21]
is an isoconversional method that utilizes Doyle’s linear
approximation[9–11] of p(x) (Eq. (10)), which transforms
Eq.(10) to,

logβ = log
AEa

g(α)R
− 2.315− 0.457

Ea

RT
(12)

A plot of log β versus 1/Tat eachα givesEa from the slope
for a particularα without regard to model.

Vyazovkin and Dollimore[22], utilized a more accurate,
non-linear, Senum–Yang[12] approximation ofp(x) (Eq.
(10)) in their isoconversional method (VYZ), which is based
on,

Ω =
∣∣∣∣∣∣

n∑
i=1

n∑
j �=i

βjI (Eaα, Tαi)

βiI
(
Eaα, Tαj

)
∣∣∣∣∣∣ (13)
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Isoconversional methods use several TGA or DSC data
sets for kinetic analysis. When performing nonisothermal
experiments, care must be taken to ensure that each run is
conducted under the same experimental conditions (i.e., sam-
ple weight, purge rate, sample size, particle morphology, etc.)
so that only the heating rate varies for each run. For exam-
ple, sample mass varying from one run to another may cause
[28]:

a. Variation in endothermic or exothermic effects (i.e., self-
heating or self-cooling), inducing deviations from a linear
heating rate.

b. Variation in diffusional rates of evolved gases.
c. Thermal gradients varying with sample mass.

Similarly, sample packing could affect solid-state reaction
kinetics where loosely packed powders contain larger air
pockets that may reduce thermal conductivity or trap evolved
gasses compared to a more densely packed powder, which
would minimize these effects.

Experimental variation can be minimized, but not totally
eliminated. Uncontrolled experimental conditions could
cause a thermogram to be altered such that it falls above or
below its expected location for a nonisothermal study. This
introduces errors in the calculation of the activation energy
b false
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hereI(Eaα, Tαi) is the exponential integral (p(x)) that resu
rom heating rateβi while I(Eaα, Tαj) is the exponential inte
ral from heatingβj. The activation energy (Ea) is the value

hat minimizesΩ in Eq.(13) for a particularα.
Vyazovkin modified this method to account for varia

eating rates and systematic errors in the activation en
n an advanced isoconversional method (AIC)[23,24]based
n the following equation,

=
∣∣∣∣∣∣

n∑
i=1

n∑
j �=i

J (Eaα, Ti (tα))

J
(
Eaα, Tj (tα)

)
∣∣∣∣∣∣ (14)

hereJ (Ea, T (t)) = ∫ tα
tα−�α

e−Eaα/RT (t)dt, for a linear heat
ng function:T(t) = T0 +βt, in whichT0 is the initial temper
ture and�α = (1/m) withm being the number ofα segment
hosen for integration (20 in our work). The integral (J(a,
(t))) was numerically evaluated by the trapezoidal met
he activation energy (Ea) is the value that minimizesΩ in
q. (14) for a particularα.

.2. Varying activation energy

The Arrhenius equation (Eq.(3)) relates the rate consta
f a simple one-step reaction to temperature through the
ation energy (Ea) and pre-exponential factor (A). It has be
raditionally assumed thatEaandA remain constant, howeve
t has been shown[25–27]that in some solid-state reactio
hese kinetic parameters may vary with the progress o
eaction (α). This variation can be detected by isocon
ional methods.
y isoconversional methods, which are manifested by a
r artifactual variation in activation energy.

In our previous work[5], we tested the sensitivity of di
erent calculational methods isothermally. This work t
he sensitivity of nonisothermal model-fitting and isoc
ersional methods to similar variables and their applica
o real TGA data. Actual experimental data was base
esolvation reaction kinetics of a drug solvate (sulfame
esolvation reactions are characterized by the removal o
ent molecules from the crystalline solvate below its mel
oint [29]. Such reaction kinetics can be studied by ther
ethods[30].
Sulfameter (structure below) is a long acting sulfonam

hat is used for the treatment of urinary tract infections[31].
dioxolane (structure below) solvate of sulfameter was u

o study nonisothermal desolvation reaction kinetics.

The sulfameter solvate system was selected for this s
ecause it has been previously shown[32] that desolvatio
f sulfameter solvates is a simple process because s
olecules fill channels within the crystal structure and
lvation involves the removal of solvent from such chann
lthough desolvation does not reflect the inherent comp

ties observed in many other solid-state systems, it
epresent simple solid-state reactions that occur in many
aceutical solids.
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2. Experimental

This investigation consists of data simulation where sev-
eral nonisothermal runs were generated then analyzed math-
ematically and experimental results for the nonisothermal
desolvation of sulfameter-dioxolane solvate.

Nonisothermal kinetic data were evaluated by model-
fitting methods (Coats–Redfern) in addition to isocon-
versional methods, which include the Ozawa–Flynn–Wall
(OFW) method and Vyazovkin’s (VYZ) isoconversional and
advanced isoconversional (AIC) methods.

2.1. Data simulation

A simple, one-step reaction (solid A producing solid B
and gas C) according to the scheme below was simulated
nonisothermally:

A(s)→ B(s)+ C(g)

Twenty-four simulations were generated using
Microsoft® Excel from the integral form of the rate
law (Eq. (10)). Nonisothermal data were simulated by
calculating the temperature (T) forα values between 0.01
and 0.99 according to:

Ψ =
∣∣∣g(α)

βR − p(x)

∣∣∣ (15)
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Fig. 1. Error-free simulations (B1, C1) ofα vs. temperature for nonisother-
mal kinetic runs at: (a) (�) 2 K/min; (♦) 4 K/min; (�) 8 K/min; (�) 16 K/min
and (�) 32 K/min (simulation B1); (b) (�) 0.5 K/min; (♦) 1 K/min; (�)
1.5 K/min; (�) 2 K/min and (�) 2.5 K/min (simulation C1). The inset gives
the model, pre-exponential factor (A) and activation energy (Ea) for these
simulations.

would be difficult to determine the particular effect of the per-
turbation on aα–T curve. Alternatively, perturbations were
introduced into one or twoα–T curves to precisely observe
their effect on the kinetic results.

Perturbations introduced into each simulation set included
shifting one or more curves or changing their nominal heating
rate. A curve shift simulates thermal lag in a sample, while
a change in the nominal heating rate simulates possible self-
cooling/heating effects or the effect of using the programmed
heating rate rather than the actual one.

Kinetic analysis of each simulation was done by the
Coats–Redfern model-fitting method[13,14] in addition
to several isoconversional methods: Ozawa–Flynn–Wall
[20,21]; Vyazovkin’s isoconversional[22]; and, the advanced
isoconversional[23,24]. All kinetic analyses were conducted
with Microsoft Excel’s Solver® tool for the Vyazovkin
and AIC methods or direct calculation for the OFW and
Coats–Redfern methods.

2.2. Sulfameter solvate desolvation

Sulfameter was obtained from Sigma® Chemical Co. (lot
no. 107F0910) while dioxolane was obtained from Aldrich®
∣ AEa
∣

alues were assigned to the above parameters (g(α),Ea, A
ndβ) and the exponential integral (p(x)) was approxima
y the 3rd degree Senum–Yang approximation. Nonisot
al data were simulated using Microsoft Excel’s Solver® by

nding the value ofT at eachα, which minimizesΨ in Eq.
15).

Nonisothermal runs were simulated in two data sets
and C). The first simulation in set B (B1) consis

f five error-free nonisothermal (α–T) curves generate
ve heating rates (2, 4, 8, 16 and 32 K/min) using a fi
rder model (g(α) = −ln(1− α)) with A = 1 ×1015 min−1 and
a = 100 kJ/mole (Fig. 1a). Thirteen additional simulati

B2–14) were generated from B1 using the same kin
arameters and model but with perturbations in temper
r heating rate (Table 2)

The first simulation in set C (C1) consisted of five er
ree nonisothermal (α–T) curves, which were generated u
he same parameters for simulation B1 except the he
ates (0.5, 1, 1.5, 2 and 2.5 K/min) (Fig. 1b) covered a
ower range. Nine additional simulations (C2–10) were
rated from C1 using the same kinetic parameters and m
ut with different perturbations in each (Table 2). The us

ow heating rates as in simulation set C has been previo
uggested[33] to narrow the temperature range of nonisot
al experiments. Narrow temperature ranges may re
ifferences between isothermal and nonisothermal ex
ents[33].
Ideally, perturbations should affect allα–T curves, bu

any more simulations would have to be generated a
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Table 2
Nonisothermal simulations generated from simulations B1, C1 (error-free),
produced using a first-order reaction model (F1) with,A = 1 ×1015 min−1

andEa = 100 kJ/mol

Simulation Simulation characteristics*

B1 Five nonisothermal curves at heating rates of 2, 4, 8,
16 and 32 K/min

B2 32 K/min curve shifted by +2 K
B3 32 K/min curve shifted by−2 K
B4 16 K/min curve shifted by−2 K
B5 8 K/min curve shifted by−2 K
B6 4 K/min curve shifted by−2 K
B7 1 K/min curve shifted by−2 K
B8 Heating rate of 32 K/min curve taken as 28.2 K/min
B9 Heating rate of 16 K/min curve taken as 14.4 K/min
B10 Heating rate of 8 K/min curve taken as 7.2 K/min
B11 Heating rate of 4 K/min curve taken as 3.6 K/min
B12 Heating rate of 2 K/min curve taken as 1.8 K/min
B13 2 K/min and 32 K/min curves shifted by +3 K and

−2 K, respectively
B14 0.5% random error in temperature (◦C) added to each

curve
C1 Five nonisothermal curves at heating rates of 0.5, 1,

1.5, 2 and 2.5 K/min
C2 0.5 K/min curve shifted by +2 K
C3 1 K/min curve shifted by +2 K
C4 1.5 K/min curve shifted by +2 K
C5 2 K/min curve shifted by +2 K
C6 2.5 K/min curve shifted by +2 K
C7 0.5 K/min curve shifted by−2 K
C8 1.5 K/min curve shifted by−2 K
C9 2.5 K/min curve shifted by−2 K
C10 0.5% random error in temperature (◦C) added to each

curve

* Simulations B2–13 and C2–10 are perturbations of B1 and C1 simula-
tions, respectively.

Chemical Co. (lot no. LO14921KO). These chemicals were
used as supplied. A dioxolane solvate of sulfameter was
prepared by recrystallizing sulfameter from the neat sol-
vent. Samples were sieved and a particle size range of
850–1700�m was used.

Desolvation data for the solvate was obtained nonisother-
mally by thermogravimetry using a Perkin-Elmer TGA 7.
The TGA temperature was calibrated by a two-point calibra-
tion method using alumel and nickel. A flow of nitrogen gas
ranging from 40 to 50 ml/min was used as a purge.

Five data sets, each containing five samples of sulfameter-
dioxolane were desolvated at different heating rates. Sam-
ple sizes ranged from 3 to 5 mg. Within each set, sample
weights were within 5% of each other. Runs were performed
at nominal heating rates of 1, 1.5, 2, 2.5 and 3 K/min for
two sets while nominal heating rates for the remaining three
sets were 1, 2, 4, 8 and 16 K/min. The exact heating rate
was obtained from the slope of the linear heating curve of
the TGA run during the time period of significant weight
loss.

Kinetic analysis for desolvation data was done by model-
fitting and isoconversional methods, as described earlier for
simulated data.

3. Results and discussion

Fig. 2 shows five sets of nonisothermal desolvation
thermograms for sulfameter-dioxolane samples. Gravimet-
ric weight loss for these solvates showed a 1:1 drug–solvent
ratio (∼21% w/w). Kinetic analysis for simulated and real
data sets is described below.

3.1. Simulated data

3.1.1. Isoconversional methods
Kinetic results for nonisothermal data (Figs. 3–9) show the

sensitivity of isoconversional methods to introduce perturba-
tions. This sensitivity is manifested either as an inaccurate
value ofEa or as an artifactual variation inEa as a function
of α.

Perturbations involving curve shifts had two effects on
kinetic analysis. First, calculatedEa values were significantly
affected and second, the linearity of isoconversional plots
was affected producing an artifactual variation inEa. These
effects were seen for both simulation sets B (B2–7,Fig. 4;
B13,Fig. 5) and C (C2–9,Fig. 8).

Perturbations, which changed the heating rate did not
affect the shape (i.e., linearity) of the isoconversional (Ea–α)
plot. However, they significantly changed calculatedEa val-
ues, as seen in simulations B8–12 (Fig. 5).
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Analysis of simulation results also showed that the s
erturbation had different effects on each curve, which
een previously shown isothermally[5]. In simulation set B
erturbations affecting the middle curve (3rd of five) p
uced less error than those affecting the outer curves (i.e
r 5th curve). For example, in simulations B3 and B7 (Fig
hifting an outer curve (1st or 5th) by−2 K produced a large
rror inEa compared to simulation B5 with the same shift
middle curve (∼6% versus 0.8%). A similar observation
een for simulations B8 and B12 where a larger error iEa
as produced when an outer curve was shifted compar

ess error for B10, which involved a shift in the middle cu
∼ 3% versus <0.1%,Fig. 5). The maximum error inEa was
roduced in simulation B13 where more than one curve
hifted (∼18%Fig. 5).

For simulation set C, fitted results also showed that pe
ations affecting outer curves (i.e., 1st or 5th) produced highe
a variation than those affecting the middle curve (i.e., 3rd).
owever, errors inEa differed if the direction of the perturb

ion changed (Fig. 8). For example, simulations C2 and
nvolved shifting the first (C2) and fifth (C6) curves by +2 K

2 K, respectively, gave∼ 16% error inEa (C2) compared t
10% error (C6). Similarly, C2 and C7 involved shifting

rst curve (0.5 K/min curve) by +2 K and−2 K, respectively
roducing∼ 16% (C2) compared to∼ 14% (C7) errors inEa.
lso, C4 and C8 involved shifting the 3rd curve (1.5 K/min
urve) by +2 K and−2 K, respectively, producing errors
4.5% (C4) or∼ 0.7% (C8).
Errors produced in simulation set C were generally hig

han those in set B. For example, a curve shift of−2 K for
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Fig. 2. α–T plots for the nonisothermal desolvation of sulfameter-dioxolane solvate sets: (a) set 1; (b) set 2; (c) set 3; (d) set 4; (e) set 5.

Fig. 3. Ea–α plots of simulated nonisothermal runs (simulation B1), evalu-
ated by three isoconversional methods: (�) VYZ; (�) OFW; (�) AIC.

Fig. 4. Ea–αplots of simulated nonisothermal runs (simulations B2–7), eval-
uated by two isoconversional methods: (�) VYZ; (�) AIC.
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Fig. 5. Ea–α plots of simulated nonisothermal runs (simulations B8–13),
evaluated by two isoconversional methods: (�) VYZ; (�) AIC.

Fig. 6. Ea–α plots of simulated nonisothermal runs (simulation B14), eval-
uated by three isoconversional methods: (�) VYZ; (�) OFW; (�) AIC.

the first curve in simulations B7 and C7 produced anEa error
of ∼ 7% (B7) versus∼ 14% (C7). Shifting the last curve by
+2 K and−2 K in B2 and B3 produced∼ 6% error inEa for
each. However, these shifts (+2 K and−2 K in the last curve)
producedEa errors∼ 10% (C6) and 8% (C9) in set C. Larger
errors in simulations C are probably due to the experimen-
tal design. In this simulation set (set C), heating rates were

Fig. 7. Ea–α plots of simulated nonisothermal runs (simulation C1), evalu-
ated by three isoconversional methods: (�) VYZ; (�) OFW; (�) AIC.

Fig. 8. Ea–αplots of simulated nonisothermal runs (simulations C2–9), eval-
uated by two isoconversional methods: (�) VYZ; (�) AIC.

selected to yield curves that cover a narrower temperature
range, which produced curves less separated than those over
the wider temperature range in simulation set B. For exam-
ple, C1 curves were closely spaced (Fig. 1b) with each curve
separated by the 0.5 K/min difference in heating rate (i.e., 0.5,
1, 1.5, 2 and 2.5 K/min), whereas, curves in simulation B1
(Fig. 1a) were separated by a two-fold heating rate difference
(i.e., 2, 4, 8, 16 and 32 K/min). As a result, any curve shift
is likely to affect closely spaced curves (set C) more than
widely spaced ones (set B).

Because narrow temperature-range curves are so closely
spaced, any shift within these curves may cause a curve
to shift to a position where it overlaps the curve that fol-
lows it (i.e., curve having a higher heating rate) or overlaps
the curve that precedes it (i.e., curve having a lower heat-
ing rate). This overlap was observed in simulations C4 (1.5
and 2 K/min curves), C5 and C9 (2 and 2.5 K/min curves)
as seen inFig. 10a–c, but this effect is less likely in wider
temperature-range curves as they are more widely spaced.
Even when maximal curve shifts were introduced (B13), sim-
ulated curves remained well separated (Fig. 10d).

Data analysis also showed that the AIC method was
slightly more accurate in calculatingEa than the OFW or

F val-
u

ig. 9. Ea–α plots of simulated nonisothermal runs (simulation C10), e
ated by three isoconversional methods: (�) VYZ; (�) OFW; (�) AIC.



108 A. Khawam, D.R. Flanagan / Thermochimica Acta 436 (2005) 101–112

Fig. 10. α–T curves for simulations C4, C5 and C9 (a–c) at nominal heating rates of: (�) 2 K/min; (♦) 4 K/min; (�) 8 K/min; (�) 16 K/min; (�) 32 K/min and
simulation B13; (d) at: (�) 0.5 K/min; (♦) 1 K/min; (�) 1.5 K/min; (�) 2 K/min and (�) 2.5 K/min.

VYZ methods, however, it was more sensitive to random
errors (Figs. 6 and 9). The higher random error is probably
due to integration over smallα intervals (�α= 0.05) in Eq.
(14); the scatter could be reduced by smoothing but exper-
imental information could be lost if too much smoothing is
done.

3.1.2. Model-fitting results
Kinetic analysis of simulated data by the Coats–Redfern

model-fitting method shows that perturbations introduced lit-
tle effect on calculated kinetic parameters (Table 3) as Aand
Ea were calculated with little error. However, two problems
were encountered: all models gave acceptable fits (r > 0.93);
some models were indistinguishable (A2, A3, A4 and F1)
based on quality of the fit (i.e., allr-values equal). There-
fore, quality of fit is a poor indicator of the best model when
using model-fitting methods, as other authors have reported
[33].

3.2. Sulfameter desolvation

Fig. 11showsEa–αplots for the desolvation of five exper-
imental data sets for sulfameter-dioxolane solvate desolva-
tion. The isoconversional plots of all sets show variation
in Ea. Sample sets 1–2 (Fig. 11a and b) show the high-
e tion
i also

Table 3
Fitted kinetic parameters for simulated nonisothermal data (B and C), using
the Coats–Redfern methoda,b

Simulation A (min−1) × 1014 Ea (kJ/mol)

B1 9.5 99.9
B2 10.0 100.1
B3 9.2 99.6
B4 9.1 99.6
B5 9.1 99.6
B6 9.1 99.6
B7 9.1 99.6
B8 9.3 99.9
B9 9.3 99.9
B10 9.3 99.9
B11 9.3 99.9
B12 9.3 99.9
B13 9.8 100.0
B14 9.7 99.9
C1 9.6 99.9
C2 10.1 100.1
C3 10.0 100.1
C4 10.0 100.1
C5 10.0 100.1
C6 10.0 100.1
C7 9.1 99.6
C8 9.1 99.6
C9 9.1 99.6
C10 9.4 99.8

a Results shown for first-order (F1) model.
b Results averaged from five heating rate curves using the geometric mean

of A andEa.
st random scatter (AIC method) and systematic varia
n Ea. The isoconversional plots for the two sets were
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Fig. 11. Ea–α plots for nonisothermal sulfameter-dioxolane solvate desolvation runs (sets 1–5), evaluated by three isoconversional methods: (�) OFW; (�)
VYZ; (�) AIC.

significantly different, especially forα < 0.5 (Fig. 12). On
the other hand, sample sets 3–5 (Fig. 11c–e) showed less
systematicEa variation and random scatter. However, the
isoconversional plots for all three data sets were comparable
(Fig. 12) indicating better consistency of more widely spaced
heating rates.

Isoconversional plots for sets 1–2 are comparable to those
for simulation set C as they involve heating rates that pro-
duce closely spaced curves (i.e., cover a narrow temper-
ature range) while plots for sets 3–5 are comparable to
those obtained from simulation set B as they involve heat-
ing rates that produce widely spaced curves (i.e., cover a
wider temperature range). Large errors seen in sample sets

1–2 compared to sets 3–5 are perhaps due to the nature of
the experimental protocol as was seen for simulation set C.
Like simulation C1, curves in sample sets 1–2 were closely
spaced where small curve shifts in these sets caused their
positions to move above or below their expected positions
(Fig. 13a), which dramatically affects the shape of isocon-
versional plots (Fig. 12). Similarly, simulation B1 resembles
those of sample sets 3–5 as they were widely spaced and curve
shifts due to experimental variation had less effect on curve
positions (Fig. 13b) and the shape of isoconversional plots
(Fig. 12).

Also, experimental TGA curves are generally expected to
produce more errors in the isoconversional kinetic analysis
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Table 4
Fitted kinetic parameters for nonisothermal sulfameter-dioxolane desolvation data sets (Fig. 2), using the Coats–Redfern methoda

Model ln A (min−1) Ea (kJ/mol)

Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5

A2 30.5 30.1 31.9 30.6 28.4 91.0 89.6 94.5 91.2 84.7
A3 18.7 18.5 19.9 19.0 17.5 58.8 57.9 61.1 58.9 54.5
A4 12.8 12.6 13.8 13.1 12.0 42.7 42.0 44.4 42.7 39.5
D1 97.3 96.2 99.6 97.1 90.3 279.8 276.0 289.8 283.6 263.3
D2 106.3 105.0 108.7 105.7 98.3 305.9 301.8 317.1 309.2 287.3
D3 117.7 116.3 120.5 116.5 108.5 341.3 336.4 354.0 343.6 319.7
D4 109.0 107.7 111.5 108.2 100.6 317.4 313.0 329.1 320.4 297.8
F1 65.4 64.6 67.3 64.8 60.4 187.6 184.8 194.8 188.1 175.0
F2 94.0 92.7 96.7 91.8 86.1 265.2 260.8 276.3 263.0 245.8
F3 129.7 127.8 133.5 125.5 118.1 362.7 356.2 378.7 356.9 334.7
P2 21.0 20.8 22.1 21.5 19.8 65.7 64.8 68.2 66.6 61.6
P3 12.3 12.1 13.3 12.9 11.7 42.0 41.3 43.5 42.5 39.1
P4 7.9 7.8 8.8 8.5 7.6 30.1 29.6 31.2 30.5 27.9
R1 46.7 46.1 48.2 46.9 43.5 137.1 135.2 142.0 139.0 128.8
R2 54.2 53.5 55.9 54.1 50.2 159.1 156.9 165.0 160.5 149.0
R3 57.0 56.3 58.8 56.7 52.7 167.8 165.4 174.1 168.9 157.0

a Results in each data set are averaged from five heating rate curves (geometric mean ofEa andA).

because, in addition to any observed curve shift that might
occur, actual heating rates are usually different from those
programmed due to self-heating/cooling effects. Therefore,
in reality, curves are more tightly spaced than expected in the
experimental protocol.

Model-fitting results of sample sets showed that kinetic
parameters (Ea andA) of all sets gave comparable values for
each model (Table 4). Therefore, curve shifts that occurred
from different experimental variables had less effect on
kinetic parameters calculated by the Coats–Redfern method.
This finding was also substantiated by the analysis of sim-
ulated data. Problems encountered with the Coats–Redfern
model-fitting method were similar to those seen for simulated
data, which included excellent fits for all models (r> 0.94,
Fig. 14) with some models being indistinguishable (A2, A3,
A4 and F1) based on a statistical criterion (see variation inr
for each model,Fig. 14).

F sol-
v

Fig. 13. α–Tplots for the nonisothermal desolvation of sulfameter-dioxolane
solvate for five experimental sets: (a) sets 1–2 with nominal heating rates of
1, 1.5, 2, 2.5 and 3 K/min; (b) sets 3–5 with nominal heating rates of 1, 2, 4,
8 and 16 K/min.
ig. 12. Ea–α plots for nonisothermal sulfameter-dioxolane solvate de
ation evaluated by the Vyazovkin (VYZ) method.
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Fig. 14. Model-fitting correlation coefficients (r) for nonisothermal
sulfameter-dioxolane solvate desolvation evaluated by the Coats–Redfern
method: (�) set 1; (�) set 2; (�) set 3; (©) set 4; (�) set 5. Values from
each set are averaged from five curves.

4. Conclusions

Reaction complexity in solid-state kinetics is usually
described by a variation inEa as a reaction proceeds and this
variation is best detected by isoconversional methods that per-
form a model-free analysis ofEa as a function of conversion.
However, our results showed methods that detect reaction
complexity can also artificially contribute to this complexity,
which is manifested as an artifactualEa variation. An arti-
factual variation inEa can result in erroneous mechanistic
conclusions about a reaction being complex when, in fact, it
is not.

Isothermally, most isoconversional methods do not con-
tribute to this artifactual variation[5], however, nonisother-
mal results showed that all tested isoconversional methods
produced artifactual variation inEa. This variation was of
different magnitudes compared to true variations that result
from reaction complexity, while the magnitude of this varia-
tion appears to be small compared to the actualEa variation
(i.e., resulting from reaction complexity) in some experi-
ments where curves were well separated, the magnitude of
artifactual variation was quite high in others, which had little
separation between curves.

ArtifactualEa variation can be attributed to various exper-
imental variables that can shift thermogravimetric curves
from their expected positions (e.g., less systematic shift with
i tions
i ions
i use
t than
t can-
n thod
u bet-
t ntal
v (i.e.,
s each

run (±5%), controlling purge gas flow rate as well as carefully
replicating experiments. Nonisothermal experiments should
be designed so that curves are widely separated. A two-fold
difference in heating rates between curves produced more
consistentEa values in our experimental work.

Model-fitting methods were least affected by experimental
variables that cause curve shifts. However, they simultane-
ously determineEa andA from a single thermogravimetric
curve, which could lead to inaccuracies, such as indistin-
guishable models based on statistical criteria. Additionally,
model-fitting methods cannot reveal reaction complexity as
they assume a constant value ofEa and A, which may be
a valid assumption for the sulfameter solvate system, it has
been previously shown that desolvation of this type of solvate
is a simple reaction[32] that could be described by a single
kinetic triplet (A,Ea and model)[34].

Inaccurate determination of heating rates affects all calcu-
lation methods in solid-state kinetic analyses. Therefore, the
actual heating rate of each run rather than that programmed
should be used in kinetic analyses.

Finally, there is no single method that can perfectly eval-
uate solid-state kinetics, even for a simple system, such as
desolvation. Both modelistic and model-free methods have
their advantages and limitations. An approach that utilizes
both methods in a complementary fashion has been shown
to produce promising results. Such an approach is recom-
m
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