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Abstract

The concept of variable activation energy in solid-state reaction kinetics has caused considerable debate. Activation energy variation has
been detected by isoconversional or “model-free” calculation methods, which generate activation energy as a function of reaction progress.
The relationship between calculation methods and artifactual variation in activation energy was investigated in this work by employing
model-fitting and isoconversional methods to analyze both simulated and experimental nonisothermal data. The experimental data was for
nonisothermal sulfameter-dioxolane solvate desolvation by TGA. We show that variable activation energy in simple reactions could be an
artifact resulting from the incorrect application of isoconversional methods.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction 1.1. Rate laws and kinetic analysis

Some theoretical aspects of solid-state kinetics have The rate of a solid-state reaction can be generally
caused numerous debates and controvefigg One such described by,
controversy is the variation in activation energy as a func-
tion of reaction progreg8,4]. Explanations for this variation ~ do
usuall T ) - o =kf(a) Q)

y focus onthe complexities inherentin solid-state kinet- d¢

ics with little consideration being given to secondary effects, . ) ] .
such as artifacts from mathematical or computational meth- Wherekis the reaction rate constafi) is the reaction model
ods. The aim of this work is to test the reliability of these @nd is the conversion fraction. _
methods. Our previous work focused on analyzing isothermal ~ Intégrating the above equation gives the integral rate law,
data[5] and this part focuses on kinetic analysis of simulated
and real experimental nonisothermal data. 8(e) = ki )

whereg(«) is the integral reaction model. The temperature
dependence of the rate constant is described by the Arrhenius
equation6],
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whereA is the pre-exponential (frequency) factéy, is the
activation energyf is the absolute temperature aRds the
gas constant.

Substituting Eq(3) in the above rate expressions gives,

do
4 =Ae (@) €)
and
g() = Ae ERTy (5)

Several reaction mode[g] usingf(«) or g(«) are listed in
Table 1.
Kinetic parameters can be obtained from isothermal
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If Eo/RTis replaced by “x” and integration limits transformed,
Eq. (8) becomes,

AE; (e
=52 [ S ©
Eq. (9) can be written as,

AE,
gla) = R p(x) (10)

wherep(x) is the exponential integral.

The exponential integral (p(x)) has no analytic solution
[8], but has many approximatiofid—-12].

Kinetic parameters can be obtained from nonisothermal

kinetic data by applying these rate laws or can be transformedrate laws by both model-fitting and isoconversional (model-
into nonisothermal rate expressions describing reaction ratefree) methods. Model-fitting methods involve fitting different
as a function of temperature at a constant heating rate bymodels toa-temperature curves and simultaneously deter-

utilizing the following,

do _ da dr
dr = dr dT

where da/d7is the nonisothermal reaction rate, daislthe
isothermal reaction rate and d¢/ithe inverse heating rate
1/B).

Substituting Eq(4) into Eq.(6) gives the differential form
of the nonisothermal rate law,

(6)

do A _pyrr
ar—gc @ )
Upon integration, Eq(7) gives,
AT Rt
gla) = e dr (8)
B Jo

Table 1
Solid-state rate expressions for different reaction models

mining the activation energy gk and frequency factor (A).
There are several nonisothermal model-fitting methods, one
of the most popular being the Coats and Redfern method
[13,14]. This method utilizes the asymptotic series expan-
sion for approximating the exponential integral (p(x)) in Eq.

(20), giving,
n €@ i, (AR [1— <2RTEXF’)D _fa (11)
T2 BEa Ea RT

whereTeyp is the mean experimental temperature.

Plotting the left-hand side of E¢L1), which includes the
model g(«), versus 1/Tgives E; andA from the slope and
intercept, respectively. The model that gives the best linear
fit is selected as the model of choice.

Modelistic methods has been criticized in nonisothermal
studieg15-19], because:

Model

Differential form f(e) = 1 %

d -
7 Integral formg(c) = kt

Nucleation models

Power law (P2) 2112)
Power law (P3) 3a(23)
Power law (P4) 404

Avarami-Erofe’ev (A2)
Avarami-Erofe’ev (A3)
Avarami-Erofe’ev (A4)

Geometrical contraction models

2(1— a)[-In(1 — a)]¥2
3(1—a)[-In(1 — )]
41— a)[—In(1 — a)]?

o2
)

e

[~In(1 — )]*2
[-In(1 - 0{)]1/3
[~In(1 — )]*4

Contracting area (R2) 2@ )t2 [1-@1-a¥q

Contracting volume (R3) 3(& )2 [1-(1—-a)tf
Diffusion models

1D Diffusion (D1) 1/2a &

2D Diffusion (D2) [—In(l — )] [(1—a) N1 - )]+«

3D Diffusion-Jander Eq. (D3)
Ginstling—Brounshtein (D4)

Reaction-order models
Zero-order (FO/R1) 1

First-order (F1) (+a)
Second-order (F2) *a)?
Third-order (F3) (o)

3@ a)?32(1— (1— )1B)
BR(A-a) B —1)

[1-(1-o'?
1— (2a/3)— (1 — a)?3

o

—In(1—a)
l-a)t-1
0.5[(1—a)~2—1]
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=

. They assume a constant kinetic triplet £4,and model). Isoconversional methods use several TGA or DSC data
2. They involve fitting three parameters @, and model), sets for kinetic analysis. When performing nonisothermal
which are simultaneously determined from a single curve. experiments, care must be taken to ensure that each run is
3. They involve a single heating rate, which is not always conducted under the same experimental conditions (i.e., sam-
sufficient to determine reaction kinetics. ple weight, purge rate, sample size, particle morphology, etc.)
so that only the heating rate varies for each run. For exam-

On the other hand, isoconversional methods calcate ple, sample mass varying from one run to another may cause
at progressive degrees of conversion («) without modelistic [28]:

assumptions. The Ozawa, Flynn and Wall methiad,21]
is an isoconversional method that utilizes Doyle’s linear

. Variation i doth i th ic effects (i.e., self-
approximation[9-11] of p(x) (Eq. (10)), which transforms a. Variation in endothermic or exothermic effects (i.e., se

heating or self-cooling), inducing deviations from a linear

Eq.(10)to, heating rate.
b. Variation in diffusional rates of evolved gases.
logp = |09 P )R —2.315-0. 4577 (12) c. Thermal gradients varying with sample mass.
A plot of log B versus 1/Tat eachx givesE, from the slope  Simijlarly, sample packing could affect solid-state reaction
for a particularx without regard to model. kinetics where loosely packed powders contain larger air
Vyazovkin and Dollimorg2?2], utilized a more accurate,  pockets that may reduce thermal conductivity or trap evolved
non-linear, Senum-Yanf2] approximation ofp(x) (Eq. gasses compared to a more densely packed powder, which
(20)) in their isoconversional method (VYZ), which is based \would minimize these effects.
on, Experimental variation can be minimized, but not totally
eliminated. Uncontrolled experimental conditions could
Z Z ,311 (anu Twi) (13) cause a thermogram to be altered such that it falls above or
parfewy I (Eaas a]) below its expected location for a nonisothermal study. This

introduces errors in the calculation of the activation energy
wherel(Eaq, Tyi) is the exponential integral (p(x)) that results by isoconversional methods, which are manifested by a false
from heating rates; while I(Eaq, ) is the exponential inte-  or artifactual variation in activation energy.
gral from heating;. The activation energy (s the value In our previous work5], we tested the sensitivity of dif-
that minimizes2 in Eq. (13) for a particular. ferent calculational methods isothermally. This work tests
Vlyazovkin modified this method to account for variable the sensitivity of nonisothermal model-fitting and isocon-
heating rates and systematic errors in the activation energyversional methods to similar variables and their application
in an advanced isoconversional method (AJ23,24]based  to real TGA data. Actual experimental data was based on

on the following equation, desolvation reaction kinetics of a drug solvate (sulfameter).
Desolvation reactions are characterized by the removal of sol-
J (Eaws T (12)) vent molecules from the crystalline solvate below its melting
Z Z T (Ean T, () (14) point[29]. Such reaction kinetics can be studied by thermal
i=1 j#i am S Ve methodg30].
_ Sulfameter (structure below) is a long acting sulfonamide
whereJ (Eq, T(1)) = _aq & Eaa/RT(t)dt for a linear heat- that is used for(the treatment o)f urinarygtract ir?fectiﬁiﬂ.

ing function:7(s) =T + ,Bt in which Ty is the initial temper-
ature andA« = (1/m) with m being the number af segments
chosen for integration (20 in our work). The integral ((E
T(r))) was numerically evaluated by the trapezoidal method. N\
The activation energy @ is the value that minimize® in OS—N }O—CHs Q %
Eq. (14)for a particular. 0 \—/

Sulfameter (5-methoxysulfadiazine) Dioxolane
MW - 280.3 MW - 74.08

A dioxolane (structure below) solvate of sulfameter was used
to study nonisothermal desolvation reaction kinetics.

1.2. Varying activation energy

The sulfameter solvate system was selected for this study

The Arrhenius equation (E€B)) relates the rate constant because it has been previously shd®8] that desolvation

of a simple one-step reaction to temperature through the acti-of sulfameter solvates is a simple process because solvent
vation energy (&) and pre-exponential factor (4). It has been molecules fill channels within the crystal structure and des-
traditionally assumed th&l andA remain constant, however,  olvation involves the removal of solvent from such channels.
it has been showj25—-27]that in some solid-state reactions, Although desolvation does not reflect the inherent complex-
these kinetic parameters may vary with the progress of theities observed in many other solid-state systems, it does
reaction («). This variation can be detected by isoconver- represent simple solid-state reactions that occur in many phar-
sional methods. maceutical solids.
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2. Experimental Model: First-order (F1)
17 A: 1x10'® min”

This investigation consists of data simulation where sev- 091 [_Es:100 kd/mole
eral nonisothermal runs were generated then analyzed math- g'j
ematically and experimental results for the nonisothermal o:e
desolvation of sulfameter-dioxolane solvate. 5 05

Nonisothermal kinetic data were evaluated by model- 04 ]
fitting methods (Coats—Redfern) in addition to isocon- 03 -
versional methods, which include the Ozawa—Flynn—Wall 0.2 - .
(OFW) method and Vyazovkin's (VYZ) isoconversional and 0.1 S
advanced isoconversional (AIC) methods. RNPRY i i il

295 305 315 325 335 345 355 365 375 385

2.1. Data simulation (@) Temperature (K)

A simple, one-step reaction (solid A producing solid B 0_; 1 [Wodel: Firstorder (F1) )
and gas C) according to the scheme below was simulated 08 1 A 1x10"® min”
nonisothermally: 0.7 1 E.: 100 kJ/mole
A~ B(s)+ C) s 22

Twenty-four simulations were generated using 0.4 A
Microsof® Excel from the integral form of the rate 0.3 1
law (Eg. (10)). Nonisothermal data were simulated by 02 1
calculating the temperature (7T) for values between 0.01 011 | iR
and 0.99 according to: 0 — ' '

280 300 320 340
(b) Temperature (K)

v ]g<a>f§a ) (15)

Fig. 1. Error-free simulations (B1, C1) afvs. temperature for nonisother-

Values were assigned to the above parameters (#g)A mal kinetic runs at: (a) (a) 2 K/min; (¢) 4 K/min; (¢) 8 K/min; (O0) 16 K/min
andp) and the exponential integral (p(x)) was approximated and () 32K/min (simulation B1); (b) (a) 0.5K/min; (0) 1K/min; (4)
by the 3d degree Senum-Yang approximation. Nonisother- 1.5K/min; (O) 2 K/min an_d (M) 2.5K/min (simu_lati_on C1). The inset gives
mal data were simulated using Microsoft Excel's So%by tsrilr?“;?:t?oer:,spre-exponentlal factor (A) and activation energy {& these
finding the value off" at eachy, which minimizes? in Eq. '
(15).

Nonisothermal runs were simulated in two data sets (setswould be difficult to determine the particular effect of the per-
B and C). The first simulation in set B (B1) consisted turbation on ax—T curve. Alternatively, perturbations were
of five error-free nonisothermal («—7) curves generated at introduced into one or twa—T curves to precisely observe
five heating rates (2, 4, 8, 16 and 32 K/min) using a first- their effect on the kinetic results.
order model (g(e) = —In(: &) withA =1 x 10" min—t and Perturbations introduced into each simulation set included
E;=100kJ/mole (Fig. 1a). Thirteen additional simulations shifting one or more curves or changing their nominal heating
(B2-14) were generated from Bl using the same kinetic rate. A curve shift simulates thermal lag in a sample, while
parameters and model but with perturbations in temperaturea change in the nominal heating rate simulates possible self-
or heating rate (Table 2) cooling/heating effects or the effect of using the programmed

The first simulation in set C (C1) consisted of five error- heating rate rather than the actual one.
free nonisothermal («—T) curves, which were generated using  Kinetic analysis of each simulation was done by the
the same parameters for simulation B1 except the heatingCoats—Redfern model-fitting methdd3,14] in addition
rates (0.5, 1, 1.5, 2 and 2.5K/min) (Fig. 1b) covered a nar- to several isoconversional methods: Ozawa—Flynn—-Wall
rower range. Nine additional simulations (C2-10) were gen- [20,21]; Vyazovkin'sisoconversionf2]; and, the advanced
erated from C1 using the same kinetic parameters and modeisoconversiongR3,24]. All kinetic analyses were conducted
but with different perturbations in each (Table 2). The use of with Microsoft Excel's Solve? tool for the Vyazovkin
low heating rates as in simulation set C has been previouslyand AIC methods or direct calculation for the OFW and
suggestefB3]to narrow the temperature range of nonisother- Coats—Redfern methods.
mal experiments. Narrow temperature ranges may reduce
differences between isothermal and nonisothermal experi-2.2. Sulfameter solvate desolvation
ments[33].

Ideally, perturbations should affect al-T curves, but Sulfameter was obtained from Sigfh&hemical Co. (lot
many more simulations would have to be generated and itno. 107F0910) while dioxolane was obtained from Aldfich
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Table 2 3. Results and discussion
Nonisothermal simulations generated from simulations B1, C1 (error-free),
produced using a first-order reaction model (F1) with; 1 x 10'° min—!
andE; =100 kJ/mol

Simulation Simulation characteristics

Fig. 2 shows five sets of nonisothermal desolvation
thermograms for sulfameter-dioxolane samples. Gravimet-
ric weight loss for these solvates showed a 1:1 drug—solvent
Bl Five nonisothermal curves at heating rates of 2, 4,8, ratjg (~21% w/w). Kinetic analysis for simulated and real

16 and 32 K/min data sets is described below.

B2 32 K/min curve shifted by +2 K
B3 32 K/min curve shifted by-2 K
B4 16 K/min curve shifted by-2 K 3.1. Simulated data
B5 8 K/min curve shifted by-2 K
gs ‘Izmm curve Sﬂ!geg Ey‘gi 3.1.1. Isoconversional methods

min curve shitted by . Kinetic results for nonisothermal data (Figs. 3-9) show the
B8 Heating rate of 32 K/min curve taken as 28.2 K/min L . . .
B9 Heating rate of 16 K/min curve taken as 14.4 K/min sensitivity of isoconversional methods to introduce perturba-
B10 Heating rate of 8 K/min curve taken as 7.2 K/min tions. This sensitivity is manifested either as an inaccurate
B11 Heating rate of 4 K/min curve taken as 3.6 K/min value of E5 or as an artifactual variation ifi; as a function
B12 Heating rate of 2 K/min curve taken as 1.8 K/min of a.
B13 2K/min and 32 K/min curves shifted by +3K and

oK ) Perturbations involving curve shifts had two effects on
—2K, respectively

B14 0.5% random error in temperature) added to each  KiNetic analysis. First, calculatég} values were significantly
curve affected and second, the linearity of isoconversional plots

C1 Five nonisothermal curves at heating rates of 0.5, 1, was affected producing an artifactual variatiorfi) These

o tgé?{l‘s Czjvz’;”r:ﬂted oy effects were seen for both simulation sets B (B2Fig, 4;

(ox] 1K/min curve shifted by Zz K B13,Fig. 5) f_ind C (C?—%Ig. 8). i i

ca 1.5 K/min curve shifted by +2 K Perturbations, which changed the heating rate did not

c5 2 K/min curve shifted by +2 K affect the shape (i.e., linearity) of the isoconversiongH-§

C6 2.5K/min curve shifted by +2K plot. However, they significantly changed calculai&dral-

cr 0.5K/min curve shifted by-2K ues, as seen in simulations B8-12 (Fig. 5).

gg ;g Em: gﬂxz zﬂ:gzg Ei;i Analysis of simulation results also showed that the same

c10 0.5% random error in temperature) added to each  Perturbation had different effects on each curve, which has
curve been previously shown isothermalBj. In simulation set B,

* Simulations B2-13 and C2-10 are perturbations of B1 and C1 simula- perturbations affecting the middle curve (3rd of five) pro-
tions, respectively. duced less error than those affecting the outer curves (i.e., 1st

or 5th curve). For example, in simulations B3 and B7 (Fig. 4),
shifting an outer curve (1st or 5th) by2 K produced a larger

Chemical Co. (lot no. LO14921K0O). These chemicals were error inE; compared to simulation B5 with the same shift on
used as supplied. A dioxolane solvate of sulfameter was a middle curve (~6% versus 0.8%). A similar observation is
prepared by recrystallizing sulfameter from the neat sol- seen for simulations B8 and B12 where a larger erratin
vent. Samples were sieved and a particle size range ofwas produced when an outer curve was shifted compared to
850-170Qum was used. less error for B10, which involved a shift in the middle curve

Desolvation data for the solvate was obtained nonisother- (~ 3% versus <0.1%Fig. 5). The maximum error if; was
mally by thermogravimetry using a Perkin-Elmer TGA 7. produced in simulation B13 where more than one curve was
The TGA temperature was calibrated by a two-point calibra- shifted (~18%Fig. 5).
tion method using alumel and nickel. A flow of nitrogen gas For simulation set C, fitted results also showed that pertur-
ranging from 40 to 50 ml/min was used as a purge. bations affecting outer curves (i.eStar 5" produced higher

Five data sets, each containing five samples of sulfameter-E, variation than those affecting the middle curve (i.&%).3
dioxolane were desolvated at different heating rates. Sam-However, errors ik, differed if the direction of the perturba-
ple sizes ranged from 3 to 5mg. Within each set, sample tion changed (Fig. 8). For example, simulations C2 and C6,
weights were within 5% of each other. Runs were performed involved shifting the first (C2) and fifth (C6) curves by +2 K or
at nominal heating rates of 1, 1.5, 2, 2.5 and 3K/min for —2K, respectively, gave 16% errorinE,; (C2) compared to
two sets while nominal heating rates for the remaining three ~ 10% error (C6). Similarly, C2 and C7 involved shifting the
sets were 1, 2, 4, 8 and 16 K/min. The exact heating rate first curve (0.5 K/min curve) by +2 K and2 K, respectively,
was obtained from the slope of the linear heating curve of producing~ 16% (C2) compared te 14% (C7) errors itk,.
the TGA run during the time period of significant weight Also, C4 and C8 involved shifting thé®%curve (1.5 K/min
loss. curve) by +2 K and-2 K, respectively, producing errors of

Kinetic analysis for desolvation data was done by model- ~ 4.5% (C4) or~ 0.7% (C8).
fitting and isoconversional methods, as described earlier for  Errors produced in simulation set C were generally higher
simulated data. than those in set B. For example, a curve shift-&K for
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0.9 Heating rate 0.9 4 Heating rate
08 - Kitnin 0.8 | {iimin)
0.7 - 41,02 0.7 +1.01
0.6 1 ©1.52 0.6 - ©1.53
8 0.5 + 2,02 8 0.5 « 2,02
0.4 = 2,53 0.4 4 = 2.65
0.3 + = 3.01 0.3 A = 3.15
0.2 4 0.2 A
0.1 1 0.1
0 | 0 1
310 360 310 320 330 340 350 360
(a) Temperature (K) (b) Temperature (K)
19 11
09 Heating rate 0.9 4 Heating rate
08 - i 08 - Qtmin)
0.7 A 2 1.01 0.7 1 2 1.02
0.6 - ¢ 2.02 0.6 - © 2.03
3 0.5 A + 4.00 8 0.5 4 + 4.01
0.4 1 o 7.88 0.4 4 o 7.89
0.3 1 = 15.36 0.3 1 = 15.27
0.2 1 0.2
0.1 4 0.1 A
0 | 0 ]
300 320 340 360 380 300 380
(c) Temperature (K) (d) Temperature (K)

0.9 4 Heating rate
0.8 4 K/min
0.7 - 4 1.01
0.6 © 2.01
8 0.5 - + 4,00
0.4 4 o 7.87
0.3 - = 15.29
0.2
0.1
0 |
300 380
(e) Temperature (K)

Fig. 2. «—T plots for the nonisothermal desolvation of sulfameter-dioxolane solvate sets: (a) set 1; (b) set 2; (c) set 3; (d) set 4; (e) set 5.

o o

Fig. 3. Ex—« plots of simulated nonisothermal runs (simulation B1), evalu- Fig. 4. E;—« plots of simulated nonisothermal runs (simulations B2—7), eval-
ated by three isoconversional methods: ((J) VYZ; (B) OFW; (¢) AIC. uated by two isoconversional methods: ((0) VYZ; () AIC.
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1254

b < B13

m < B12
< B11
< B10
< B9

< B8

0.

Fig. 5. Eq—« plots of simulated nonisothermal runs (simulations B8-13),
evaluated by two isoconversional methods: (O) VYZ; (¢) AIC.

140 1

120 1

—_

o

o
|

o]
o
L

E, (kJ/mole)
g

0 0.2 0.4 0.6 0.8 1

o

Fig. 6. Eq—« plots of simulated nonisothermal runs (simulation B14), eval-
uated by three isoconversional methods: (OJ) VYZ; (l) OFW; (#) AIC.

the first curve in simulations B7 and C7 produced:gerror
of ~7% (B7) versus~ 14% (C7). Shifting the last curve by
+2K and—2K in B2 and B3 produced 6% error inEj for
each. However, these shifts (+2 K an@ K in the last curve)
producedt; errors~ 10% (C6) and 8% (C9) in set C. Larger

errors in simulations C are probably due to the experimen-

107

1254
1203
115
110
105
100
95
901 e asin
85

80

E, (kd/mole)

0.8 1

Fig. 8. Eq—«a plots of simulated nonisothermal runs (simulations C2-9), eval-
uated by two isoconversional methods: ((OJ) VYZ; (¢) AIC.

selected to yield curves that cover a narrower temperature
range, which produced curves less separated than those over
the wider temperature range in simulation set B. For exam-
ple, C1 curves were closely spaced (Fig. 1b) with each curve
separated by the 0.5 K/min difference in heating rate (i.e., 0.5,
1, 1.5, 2 and 2.5K/min), whereas, curves in simulation B1
(Fig. 1a) were separated by a two-fold heating rate difference
(i.e., 2, 4, 8, 16 and 32 K/min). As a result, any curve shift

is likely to affect closely spaced curves (set C) more than
widely spaced ones (set B).

Because narrow temperature-range curves are so closely
spaced, any shift within these curves may cause a curve
to shift to a position where it overlaps the curve that fol-
lows it (i.e., curve having a higher heating rate) or overlaps
the curve that precedes it (i.e., curve having a lower heat-
ing rate). This overlap was observed in simulations C4 (1.5
and 2 K/min curves), C5 and C9 (2 and 2.5K/min curves)
as seen irFig. 10a—c, but this effect is less likely in wider
temperature-range curves as they are more widely spaced.
Even when maximal curve shifts were introduced (B13), sim-
ulated curves remained well separated (Fig. 10d).

Data analysis also showed that the AIC method was

tal design. In this simulation set (set C), heating rates were slightly more accurate in calculating, than the OFW or

105 1
104 4
103 1
102 1

—_

(=]

=
L

E, (kJ/mole)
O O O 8
~N 0 © o

©
(o]
L

©0
(&2}

0.4 0.6 0.8 1

o

Fig. 7. Eq—a plots of simulated nonisothermal runs (simulation C1), evalu-
ated by three isoconversional methods: ((J) VYZ; (l) OFW; (¢) AIC.

140 -

120 1
. .

* *
100 iyt R e U S R e e st
. . . . * .
80 -

60

E, (kd/mole)

40

20

0 T T T T !
0 0.2 0.4 0.6 0.8 1

o

Fig. 9. Ex—« plots of simulated nonisothermal runs (simulation C10), eval-
uated by three isoconversional methods: ((0) VYZ; (l) OFW; (¢) AIC.
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1 1

0.9 1 0.9
0.8 4 0.8 1
0.7 4 0.7
0.6 0.6 1
S 0.5 8 054
0.4 0.4 -
0.3 4 0.3 4
0.2 4 0.2 4
0.1 1 0.1 -
0 ! 0 A,
280 360 280
(a) (b)
1 14
0.9 4 0.9
0.8 1 0.8 -
07 4 0.7 -
0.6 0.6 -
3 0.5 3 054
0.4 A 0.4 -
0.3 4 0.3 A
0.2 4 0.2 4
0.1 * 0.1 4
0 - . ) 0
280 300 320 340 360 280
(c) Temperature (°K) (d) Temperature (°K)

Fig. 10. o—T curves for simulations C4, C5 and C9 (a—c) at nominal heating rates of: (a) 2 K/min; (¢) 4 K/min; (¢) 8 K/min; (OJ) 16 K/min; (M) 32 K/min and
simulation B13; (d) at: () 0.5 K/min; () 1 K/min; (¢) 1.5 K/min; () 2 K/min and (M) 2.5 K/min.

VYZ methods, however, it was more sensitive to random Taple 3
errors (Figs. 6 and 9). The higher random error is probably Fitted kinetic parameters for simulated nonisothermal data (B and C), using

due to integration over small intervals (Ao=0.05) in Eq. the Coats-Redfern mettiof

(14); the scatter could be reduced by smoothing but exper- Simulation A (min~1) x 104 Ea (kJ/mol)

imental information could be lost if too much smoothing is g1 9.5 ®.9

done. B2 10.0 100.1

B3 9.2 ®.6

3.1.2. Model-fitting results :g gi gg

Kinetic analysis of simulated data by the Coats—Redfern gg 91 06

model-fitting method shows that perturbations introduced lit- B7 9.1 ®.6

tle effect on calculated kinetic parameters (Table 3) asd B8 9.3 9.9

Ea were calculated with little error. However, two problems B9 93 9.9

i . i B10 9.3 ®.9

were encountered: all models gave acceptableA#9(93); B11 93 0.9

some models were indistinguishable (A2, A3, A4 and F1) g1» 93 ®.9

based on quality of the fit (i.e., altvalues equal). There- B13 9.8 100.0

fore, quality of fit is a poor indicator of the best model when B14 9.7 0.9

using model-fitting methods, as other authors have reportedCl 9.6 9.9

[33]. c2 10.1 100.1

C3 10.0 100.1

C4 10.0 100.1

3.2. Sulfameter desolvation C5 10.0 100.1

C6 10.0 100.1

Fig. 11showsEa—« plots for the desolvation of five exper- C7 9.1 6

a 9.1 ®.6

imental data sets for sulfameter-dioxolane solvate desolva—cg 91 06

tion. The isoconversional plots of all sets show variation cio 9.4 ®.8

in Ea. Sample sets 1-2 (Fig. 11a and b) show the high- "z gesyits shown for first-order (F1) model.
est random scatter (AIC method) and systematic variation P Results averaged from five heating rate curves using the geometric mean
in E5. The isoconversional plots for the two sets were also of A andE,,
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Fig. 11. Es—a plots for nonisothermal sulfameter-dioxolane solvate desolvation runs (sets 1-5), evaluated by three isoconversional methods: (l) OFW; (OJ)
VYZ; (#) AIC.

significantly different, especially forx <0.5 (Fig. 12). On 1-2 compared to sets 3-5 are perhaps due to the nature of
the other hand, sample sets 3-5 (Fig. 11c—e) showed lesghe experimental protocol as was seen for simulation set C.
systematicE, variation and random scatter. However, the Like simulation C1, curves in sample sets 1-2 were closely
isoconversional plots for all three data sets were comparablespaced where small curve shifts in these sets caused their
(Fig. 12) indicating better consistency of more widely spaced positions to move above or below their expected positions
heating rates. (Fig. 13a), which dramatically affects the shape of isocon-
Isoconversional plots for sets 1-2 are comparable to thoseversional plots (Fig. 12). Similarly, simulation B1 resembles

for simulation set C as they involve heating rates that pro- those of sample sets 3-5 as they were widely spaced and curve
duce closely spaced curves (i.e., cover a narrow temper-shifts due to experimental variation had less effect on curve
ature range) while plots for sets 3-5 are comparable to positions (Fig. 13b) and the shape of isoconversional plots
those obtained from simulation set B as they involve heat- (Fig. 12).

ing rates that produce widely spaced curves (i.e., cover a Also, experimental TGA curves are generally expected to
wider temperature range). Large errors seen in sample setgroduce more errors in the isoconversional kinetic analysis
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Table 4
Fitted kinetic parameters for nonisothermal sulfameter-dioxolane desolvation data sets (Fig. 2), using the Coats—Redf&rn method
Model INA (min~1) Eq4 (kJ/mol)
Setl Set 2 Set3 Set 4 Set 5 Setl Set 2 Set3 Set 4 Set 5
A2 30.5 301 319 306 284 910 896 945 912 847
A3 18.7 185 199 190 175 588 57.9 611 589 545
A4 12.8 126 138 131 120 427 420 444 427 395
D1 97.3 962 996 97.1 903 279.8 276.0 289.8 283.6 263.3
D2 106.3 105.0 108.7 105.7 aB 305.9 301.8 317.1 309.2 287.3
D3 117.7 116.3 120.5 116.5 108.5 341.3 336.4 354.0 343.6 319.7
D4 109.0 107.7 1115 108.2 100.6 317.4 313.0 329.1 320.4 297.8
F1 65.4 646 67.3 648 604 187.6 184.8 194.8 188.1 175.0
F2 94.0 927 967 918 861 265.2 260.8 276.3 263.0 245.8
F3 129.7 127.8 1335 1255 118.1 362.7 356.2 378.7 356.9 3347
P2 21.0 208 221 215 198 657 648 682 666 616
P3 12.3 121 133 129 117 420 413 435 425 391
P4 7.9 78 858 85 7.6 301 296 312 305 27.9
R1 46.7 461 482 469 435 137.1 135.2 142.0 139.0 128.8
R2 54.2 535 559 541 502 159.1 156.9 165.0 160.5 149.0
R3 57.0 563 588 567 527 167.8 165.4 174.1 168.9 157.0
@ Results in each data set are averaged from five heating rate curves (geometric fgandf).
because, in addition to any observed curve shift that might
occur, actual heating rates are usually different from those 1
programmed due to self-heating/cooling effects. Therefore, 08
in reality, curves are more tightly spaced than expected in the 08
experimental protocol. 0.7
Model-fitting results of sample sets showed that kinetic o.e
parameters (£andA) of all sets gave comparable values for s 0'5
each model (Table 4). Therefore, curve shifts that occurred ‘
from different experimental variables had less effect on o4
kinetic parameters calculated by the Coats—Redfern method. 2
This finding was also substantiated by the analysis of sim- 02
ulated data. Problems encountered with the Coats—Redfern 01
model-fitting method were similar to those seen for simulated 0
data, which included excellent fits for all models>(©@.94,
Fig. 14) with some models being indistinguishable (A2, A3, (@)
A4 and F1) based on a statistical criterion (see variation in
for each modelFig. 14).
1 A
180 0.9 1
160 1 08 7
140 -7
0.6
T 1201 3 05
[=]
100 4
g 0.4
= 80 0.3 1
Thif 60 - 0.2 -
404 0.1
0 1
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0 ‘ r T ‘ T r T T T ] (b) Temperature (K)
0 01 02 03 04 05 06 07 08 09 1

Fig. 12. Ex—« plots for nonisothermal sulfameter-dioxolane solvate desol-
vation evaluated by the Vyazovkin (VYZ) method.

Fig. 13. a—Tplots for the nonisothermal desolvation of sulfameter-dioxolane
solvate for five experimental sets: (a) sets 1-2 with nominal heating rates of
1,1.5, 2, 2.5 and 3 K/min; (b) sets 3-5 with nominal heating rates of 1, 2, 4,
8 and 16 K/min.
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Fig. 14. Model-fitting correlation coefficients (r) for nonisothermal
sulfameter-dioxolane solvate desolvation evaluated by the Coats—Redfern

method: (M) set 1; (O) set 2; (@) set 3; (O) set 4; (a) set 5. Values from
each set are averaged from five curves.

4. Conclusions

Reaction complexity in solid-state kinetics is usually
described by a variation if; as a reaction proceeds and this

111

run (£5%), controlling purge gas flow rate as well as carefully
replicating experiments. Nonisothermal experiments should
be designed so that curves are widely separated. A two-fold
difference in heating rates between curves produced more
consistenf, values in our experimental work.

Model-fitting methods were least affected by experimental
variables that cause curve shifts. However, they simultane-
ously determineZ; andA from a single thermogravimetric
curve, which could lead to inaccuracies, such as indistin-
guishable models based on statistical criteria. Additionally,
model-fitting methods cannot reveal reaction complexity as
they assume a constant value &f and A, which may be
a valid assumption for the sulfameter solvate system, it has
been previously shown that desolvation of this type of solvate
is a simple reactiof2] that could be described by a single
kinetic triplet (A, Ea and model)34].

Inaccurate determination of heating rates affects all calcu-
lation methods in solid-state kinetic analyses. Therefore, the
actual heating rate of each run rather than that programmed
should be used in kinetic analyses.

Finally, there is no single method that can perfectly eval-
uate solid-state kinetics, even for a simple system, such as
desolvation. Both modelistic and model-free methods have
their advantages and limitations. An approach that utilizes

variationis best detected by isoconversional methods that perboth methods in a complementary fashion has been shown

form a model-free analysis @, as a function of conversion.
However, our results showed methods that detect reaction
complexity can also artificially contribute to this complexity,
which is manifested as an artifactus variation. An arti-
factual variation inE5 can result in erroneous mechanistic
conclusions about a reaction being complex when, in fact, it
is not.

Isothermally, most isoconversional methods do not con-
tribute to this artifactual variatiofb], however, nonisother-
mal results showed that all tested isoconversional methods
produced artifactual variation iB,. This variation was of
different magnitudes compared to true variations that result
from reaction complexity, while the magnitude of this varia-
tion appears to be small compared to the ackgalariation
(i.e., resulting from reaction complexity) in some experi-

to produce promising results. Such an approach is recom-
mended for the evaluation of simple solid-state kingffseg.
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